US009223690B2

a2z United States Patent (10) Patent No.: US 9,223,690 B2
Kandiyanallur 45) Date of Patent: Dec. 29, 2015
(54) FREEING MEMORY SAFELY WITH LOW 2,333,2 ég i 41‘; éggg Enﬁ?lstad et lal'
A s ndicott et al.
PERFORMANCE OVERHEAD IN A 6,339,779 Bl 1/2002 Houldsworth
CONCURRENT ENVIRONMENT 6,513,100 Bl 12003 Clift
7,133,977 B2 11/2006 Pudipeddi et al.
(71) Applicant: Sybase, Inc., Dublin (CA) 7,441,252 B2 10/2008 Lietal
7,539,821 B2 5/2009 Petev et al.
. + : 7,552,284 B2 6/2009 Petev et al.
(72) Inventor: Vivek Kandiyanallur, Bangalore (IN) 73531232 B2 /2009 Bernabeu-Auban et al.
. . 7,694,065 B2 4/2010 Petev et al.
(73) Assignee: Sybase, Inc., Dublin, CA (US) 7,788,300 B2 82010 Kuck et al.
8,229,979 B2 7/2012 Manolov et al.
(*) Notice: Subject to any disclaimer, the term of this 8,266,111 B2 9/2012 Linetal.
patent is extended or adjusted under 35 8,838,928 B2* 9/2014 Robinetal. ... G06F7ﬁ;(1)423
U.S.C. 154(b) by 140 days. 2007/0226281 AL* 9/2007 Joishaoocccovvrrcire 707/206
2010/0153617 Al* 6/2010 Miroshnichenko etal. 711/6
(21) Appl. No.: 14/046,749 2013/0031333 Al* 1/2013 Sankaran etal. 711/207
(22) Filed: Oct. 4, 2013 * cited by examiner
(65) Prior Publication Data Primary Examiner — Pierre-Michel Bataille
(74) Attorney, Agent, or Firm — Sterne, Kessler, Gold-
US 2015/0100730 Al Apr. 9, 2015 stein & Fox PL.L.C.
(51) Int.CL (57) ABSTRACT
GO6F 12/02 (2006.01) . . .
GO6F 12/12 (2006.01) Freeing memory safely Wlth low Performance overhead in a
(52) US.Cl concurrent environment is described. An example method
NS) includes creating a reference count for each sub block in a
CPC GO6F 12/023 (2013.01); G06125'01123/{)211 global memory block, and each global memory block
. . . (01) includes a plurality of sub blocks aged based on respective
(58) Field of Classification S.earch)) allocation time. A reference count for a first sub block is
CPC ..ceeen. GOGF 12/02; GOGF 3/06 l.’ GOGF 3/067; incremented when a thread operates a collection of data items
GOGF 12/023; GOGE 12/121 and accesses the first sub block for a first time. Reference
USPC 7.1 l/l 18, 159 Counts forthe ﬁrst Sub block anda Second Sub block are laZily
See application file for complete search history. updated. Subsequently, the sub blocks are scanned through in
(56) References Cited the order of their age until a sub block with a non-zero refer-

ence count is encountered. Accordingly, one or more sub
blocks whose corresponding reference counts are equal to
zero are freed safely and with low performance overhead.

U.S. PATENT DOCUMENTS

2/1992 Ellis et al.
12/1993 Jackson et al.

5,088,036 A

5,274,804 A 18 Claims, 6 Drawing Sheets

310 Creating a reference count for each sub
™1 block in « global memory block, wherein
the global memory block includes a
plurality of sub blocks, which are aged
based on their allocation time

|

Incrementing a reference count for a first

320 sub block when a thread operates a

collection of data items and accesses the
first sub block for a first time

Lazily updating reference counts for the
first sub block and a second sub block when!
the thread returns with a new collection of
330 data items and accesses a second sub block
~ different from the first sub block, wherein
the reference count for the first sub block is
decremented and the reference count for the
second sub block is incremented

Freeing one or more sub blocks in the order
340 of their ages, wherein reference counts for
£ the sub blocks to be freed are equal to zero

US 9,223,690 B2

Sheet 1 of 6

Dec. 29, 2015

U.S. Patent

L "Oid

S G1y
14 w
{oseqee] MWMHWWN%
nmSmEmm@ SULIBULIOUS A
s] g sLbus

Buissi 4 Aowey

Gil tenieg

o TN
5 0gl
¢ RICARIBRY “
.s..‘.r.. r }
S g
‘f.x\\/,/.! . \,,f;.z.\ v
!NM

~

[44])
aoina(abelo)s

&3
g

0ZlL Wslo

U.S. Patent Dec. 29, 2015 Sheet 2 of 6 US 9,223,690 B2

Memory Fresing Engine with
Low Performance Overhead
(MFELPO)

115

Reference Count Creator
210

Reference Count Updater
220

Sub Blogk Freer
230

U.S. Patent

310

320,
e

330

340

£

v

Dec. 29, 2015 Sheet 3 of 6

Creating a reference count tor each sub
block in & global memory block, wherein
the global memory block includes a
plurality of sub blocks, which are aged
based on their allocanion time

.i

Incrementing a reference count for a first
sub block when a thread operates a
collection of data items and accesses the
first sub block for a first time

¥

Lazily updating reference counts for the
first sub block and a second sub block when
the thread returns with a new collection of
data items and accesses a second sub block
different from the first sub block, wherein
the reference count for the first sub block is
decremented and the reference count for the
second sub block is incremented

¥

Freeing one or more sub blocks in the order
of their ages, wherein reference counts for
the sub blocks to be freed are equal to zero

US 9,223,690 B2

US 9,223,690 B2

Sheet 4 of 6

Dec. 29, 2015

U.S. Patent

W

£ UNS | 24o0lg gng Lysoig ang |

W m waﬁumm ﬁmﬁw m I TIEIXX]

O P

50f 0018 Aowsyy feoifio|

N UCHOSHGT

RO D

Z UDOSoD

e

p0b | LOHOBHOD

fe
&3
=%

Aprocccrececrece

1000 pEORLY , _

“,

e,

444 e

aaaaaaaaaaaaaaaaaaaaaaa

US 9,223,690 B2

Sheet 5 of 6

Dec. 29, 2015

U.S. Patent

GO
00S
s | = Jupyel 0 = JuDye! = umed 1 0 = JuDjel 0 = ol
208 G HI0G ang g X30|g gqns ¥)00|g gng £ AS0I NG ¢ 33019 ans 1 90|19 gng
R T T eaffafffffsﬁff
e .
gy ,f(.ﬁf
.....f.f,,.a ,.z:f..?.,. ;
C=N00Igans C=YD0IIaNS 9=)00|gqns ™, " g=yo0|gqns g=x00|gqns CaW0IRaNs
Goea] GRESit] ,ff,wvmmE.r S cpealyy cpeaiyy bpeEa]

U.S. Patent Dec. 29, 2015 Sheet 6 of 6 US 9,223,690 B2

800
"f?“""““ —%
{) Processor 804
\\i"' "'"“"““3\,!
f_ﬁ% “‘"“\X
\) Main Memory 608
N -
1’1,.“«..,.‘««‘;\ %
Display Interface 602 s Display Unit 630
\j‘“““““‘“‘“‘yz
Secondary Memory 610
Hard Disk Drive
Communication 612
Infrastructure
606
Removable Storage} { | Removable
Drive 614 Storage Unit 618
Removable
Interface 620 - =~~~ Storage Unit 622
N Network oz -- \‘\i\m e
\ g /| Interface 624 -
v Communications Path 626

US 9,223,690 B2

1
FREEING MEMORY SAFELY WITH LOW
PERFORMANCE OVERHEAD IN A
CONCURRENT ENVIRONMENT

BACKGROUND

In a multi-threaded environment, garbage collector fre-
quently attempts to reclaim memory occupied by objects that
are no longer in use. Once an unreachable set of memory has
been determined, the garbage collector may release the
unreachable objects from the memory. Alternatively, it may
copy some or all of the reachable objects from an aged
memory into a new area of memory and update all references
to those objects as needed.

To ensure that the memory block is freed safely so that an
object is not reused while any thread still holds a pointer to it,
some systems use a reference count to indicate how many
threads or processes currently hold a reference to the object.
However, such conventional reference-count manipulation
mechanism may incur significant overhead and performance
bottleneck. Furthermore, they do not scale well when there
are highly-parallel workloads running on large multiproces-
sor systems. The problem is exacerbated in the environment
where multiple threads concurrently read and write very large
data collections from/to the memory blocks. As a result, con-
ventional systems fail to provide an ideal reference-count
mechanism for efficient memory utilization with low perfor-
mance overhead and scalability.

BRIEF DESCRIPTION OF THE
DRAWINGS/FIGURES

Embodiments are described, by way of example only, with
reference to the accompanying drawings. In the drawings,
like reference numbers generally indicate identical or func-
tionally similar elements. The drawing in which an element
first appears is typically indicated by the leftmost digit or
digits in the corresponding reference number.

FIG. 1 illustrates a client/server system, according to an
embodiment.

FIG. 2 illustrates elements of a Memory Freeing Engine
with Low Performance Overhead (MFELPO), according to
an embodiment.

FIG. 3 is a flowchart for a method for freeing memory
safely with low performance overhead, according to an
embodiment.

FIG. 4 depicts interaction of a thread pool with the sub
blocks, according to an embodiment.

FIG. 5 depicts freeing memory safely with low perfor-
mance overhead, according to an embodiment.

FIG. 6 is a diagram of an example computer system in
which embodiments can be implemented.

DETAILED DESCRIPTION

Provided herein are system, method and/or computer pro-
gram product embodiments, and/or combinations and sub-
combinations thereof, for freeing memory safely with low
performance overhead in a concurrent multi-threaded envi-
ronment. As will be described in further detail below, embodi-
ments can provide sub memory blocks which are aged based
on their allocation time, so that an older sub block is allocated
before a newer sub block. Embodiments can further imple-
ment a lazily updated reference count and a light weight
locking mechanism to keep track of the number of threads
currently referencing a sub block. Embodiments can perform
a scan through the sub blocks in the order of their age to

10

15

20

25

30

35

40

45

50

55

60

65

2

identify the sub blocks with zero reference count and abort the
scan if a sub block with a non-zero reference count is encoun-
tered. Accordingly, embodiments reduce the cost in maintain-
ing the reference counts and can free memory safely with low
performance overhead.

System

FIG. 1 illustrates a client/server system 100. System 100
includes a server 110, a Memory Freeing Engine with Low
Performance Overhead (MFELPO) 115, a client 120, a net-
work 130, and a data grid or distributed database 140.

Client 120 communicates with server 110 over the network
130. Specifically, client 120 may be connected to a Database
Management System (DBMS) (not shown) on server 110 via
network 130. In an embodiment, the DBMS such as SAPS
Adaptive Server® Enterprise (ASE), SAP Sybase 1Q, SAP
Sybase SQL Anywhere (all from SAP AG) and operates as an
independent process (i.e., independently of the clients), run-
ning under a server operating system such as Microsoft®
Windows NT, Windows 2000, Windows XP, Windows Vista
and Windows 7 (all from Microsoft Corporation of Redmond,
Wash.), UNIX (Novell), Solaris (Sun), or Linux (Red Hat),
although the invention is not limited to this example. The
network 220 includes functionality for packaging client calls
in the well-known Structured Query Language (SQL)
together with any parameter information into a format (of one
or more packets) suitable for transmission to the DBMS.
Client 120 may send SQL statement to server 110 and receive
query result from server 110. Although only one server 110 is
shown, more servers may be used as necessary. Network 130
may be any network or combination of wired and wireless
networks that carry data communication. Such network can
include, but is not limited to, a local area network, medium
area network, and/or wide area network such as the Internet.

Client 120 includes a storage device 122. Although only
one client 120 is shown, more clients may be used as neces-
sary. Storage device 122, an example of which will be
described in detail with respect to FIG. 5, can be any device
for recording and storing information, which includes but is
not limited to, flash memory, magnetic tape and optical discs.

Server 110 can host Memory Freeing Engine with Low
Performance Overhead (MFELPO) 115. As illustrated in
FIG. 1, client 120 can send data requests to server 110, which
can in turn invoke MFELPO 115 for further processing.
MFELPO 115 can be software, firmware, or hardware or any
combination thereof in a computing device. System 100 can
be implemented on or implemented by one or more comput-
ing devices. As will be further described with respect to FIG.
5, a computing device can be any type of computing device
having one or more processors. For example, a computing
device can be a computer, server, workstation, mobile device
(e.g., a mobile phone, personal digital assistant, navigation
device, tablet, laptop or any other user carried device), game
console, set-top box, kiosk, embedded system or other device
having at least one processor and memory. A computing
device may include a communication port or I/O device for
communicating over wired or wireless communication
link(s).

FIG. 2 illustrates elements of a Low Performance Over-
head Memory Freeing Engine (MFELPO), according to an
embodiment. In the example shown in FIG. 2, MFELPO 115
includes reference count creator 210, reference count updater
220, and sub block freer 230.

Reference count creator 210 creates a reference count for
each sub block in a global logical memory block. A logical
memory structure may include multiple sub memory blocks,
which are operated upon by multiple threads concurrently to
read and write very large data collections from or to the sub

US 9,223,690 B2

3

memory blocks. For example, the concurrent threads may
process “big data” which according to an embodiment may
contain data sets with sizes beyond the ability of commonly
used software tools to capture, curate, manage, and process
the data within a tolerable elapse time. In an embodiment, big
data may encompass high volume, high velocity, and/or high
variety information assets that require new forms of process-
ing to enable enhanced decision making, insight discovery
and process optimization. In an embodiment, depending on
the capabilities of the organization managing the data set, and
on the capabilities of the applications that are used to process
and analyze the data set in its domain, big data sizes may
range from a few dozen terabytes to many petabytes of data in
a single data set.

In one embodiment, sub memory blocks may age based on
their allocation time. For example, an older sub block is
allocated before a newer sub block. The sub block whose age
has exceeded a threshold may need to be freed. Alternatively,
sub blocks whose data has been copied to newer sub blocks
may be freed. To facilitate the process of freeing the aged sub
blocks for efficient memory utilization, a reference count may
be generated by reference count creator 210 indicating how
many threads currently hold reference to a specific sub block.
A sub block may age over time and reach a state when it is no
longer required. If a reference count of a sub block reaches
zero, the sub block may become inaccessible, and the object
in the sub block can be destroyed. Thus, a sub block may be
freed when no thread is actively holding reference to it.

Reference count updater 220 increments a reference count
for afirst sub block when a thread operates a collection of data
items and accesses the first sub block for a first time. For
example, a thread may read a collection of data items from a
first sub block. Alternatively, a thread may write a collection
of data items into a first sub block. When a thread access the
first sub block for a read or write operation, reference count
updater 220 may increment the reference count for the first
sub block.

Reference count updater 220 further lazily updates refer-
ence counts for the first sub block and a second sub block
when the thread returns with a new collection of data items
and accesses a second sub block different from the first sub
block. For example, the reference count for the first sub block
is decremented and the reference count for the second sub
block is incremented.

A relatively simple reference count manipulating mecha-
nism may require frequent updates so that whenever a refer-
ence to a sub block is destroyed or overwritten, the reference
count of the corresponding sub block is decremented; and
whenever a reference to a sub block is created or copied, the
reference count of the corresponding sub block is incre-
mented. In contrast to this simple reference counting mecha-
nism, reference count updater 220 may take a lazy updating
approach to reduce performance overhead.

According to an embodiment, a thread may cache a refer-
ence to a sub block in a local storage of a thread when the
thread operates on a collection of data items and accesses the
sub block for a first time. For example, when the thread
operates on a collection of data items and accesses a first sub
block for the first time, the thread may cache a reference to the
first sub block in its local storage.

During the course of the thread processing its collection of
data items, it may operate on a second sub block which is
newer than the first sub block. For example, because the
second sub block is allocated later than the first sub block, its
age is less than that of the first sub block. In some embodi-
ment, reference count updater 220 does not increment the

10

15

20

25

30

35

40

45

50

55

60

65

4

reference count of the second sub block to account for the
access of the second sub block by this thread at this time.

During the course of the thread processing its collection of
data items, it may complete its collection of data items and
leave a sub block. For example, the thread may complete a
first collection of data items and leave the first sub block. In
some embodiments, reference count updater 220 does not
decrement the reference count of the first sub block at this
time.

During the course of the thread processing its collection of
data items, a thread may complete processing a first collection
of data items and return with a new collection of data items. In
the event that the thread accesses a second sub block which is
different from the first sub block for the processing of the new
collection of data items, in some embodiments, reference
count updater 220 may decrement the reference count of the
first sub block and increment the reference count of the sec-
ond sub block.

In some embodiments, when a thread is destroyed, refer-
ence count updater 220 may decrement the reference count of
the sub block which is cached in the local storage of the
thread.

Rather than the frequent updates in the conventional refer-
ence counting mechanism, this delayed and lazy approach
adopted by reference count updater 220 maintains the integ-
rity of the reference count of the sub block while reduces
performance overhead.

In an embodiment, sub block freer 230 frees one or more
sub blocks whose corresponding reference counts are equal to
zero, in the order of their age. For example, sub block freer
230 may scan through the aged sub blocks in the order of their
corresponding age from the oldest sub block to the newest sub
block. If the reference count is found to be zero, sub block
freer 230 may free the corresponding sub block. In some
embodiments, sub block freer 230 may terminate the sequen-
tial scanning process if it encounters a sub block with non-
zero reference count.

Embodiments of the elements of MFELPO 115 in FIG. 2,
as described herein, may be further configured to run in
parallel. Such parallel execution of these elements would
increase the efficiency and speed of MFELPO 115.

Method

FIG. 3 is a flowchart for a method for freeing memory
safely with low performance overhead, according to an
embodiment. For ease of explanation, method 300 will be
described with respect to MFELPO 115 of FIG. 2, as
described above. However, method 300 is not intended to be
limited thereto.

At stage 310, a reference count for each sub block in a
global memory block is created. The global memory block
may include a plurality of sub blocks, which are aged based
on their allocation time. For example, reference count creator
210 creates a reference count for each sub block in a global
memory block. The sub blocks in the global memory block is
further illustrated in detail in FIG. 4.

FIG. 4 depicts interaction of a thread pool with the sub
blocks, according to an embodiment. In the example illus-
trated in FIG. 4, thread pool 402 contains a plurality of
threads, which may operate on data collections 1 to N 404 to
read or write on logical memory block 406. Logical memory
block 406 may include a plurality of sub blocks 1-N. In an
embodiment, the age of the sub block is based on the respec-
tive allocation time for each sub block. Blocks 1-N are allo-
cated chronologically, from the oldest to the newest one. For
example, sub block 1 is older than sub block 2, which is older
than sub block 3 and so on.

US 9,223,690 B2

5

In another embodiment, thread 1 from thread pool 402
operates on collection 1 of data items. For example, a collec-
tionmay be a set of rows in database table. A collection of data
items may include but is not limited to “big data” such as
meteorology, genomics, connectomics, complex physics
simulations, biological and environmental research data, etc.
In an another example, “big data” may be collected from
Internet search, finance and business informatics. In still
another example, data collections may be gathered by ubig-
uitous information-sensing mobile devices, aerial sensory
technologies (such as remote sensing), software logs, cam-
eras, microphones, radio-frequency identification readers,
and wireless sensor networks. The foregoing is provided for
purposes of illustration and not limitation.

In this embodiment, thread 1 may write or read collection
1 of data items iteratively into and from sub block 1. When
thread 1 completes its operation on collection 1, it may start
operating on collection 2.

According to an embodiment, operation on a collection
may span access to multiple sub blocks. For example, thread
1 may span access to sub blocks 1 and 2 for operating on
collection 1. Sub blocks may age based on their allocation
time, such that an older sub block is allocated before a newer
sub block. A sub block may age over time, and can be freed
when no thread actively hold reference to it.

Referring back to FIG. 3, at stage 320, a reference count for
a first sub block is incremented when a thread operates a
collection of data items and accesses the first sub block for a
first time. For example, reference count updater 220 may
increment a reference count for a first sub block when a thread
operates a collection of data items and accesses the first sub
block for a first time

In one embodiment, when a thread starts on a collection
and accesses a sub block for a first time, it may cache a
reference to the sub block in its thread local storage. With the
reference count created at stage 310, each sub block may
maintain a record through this active reference count, indi-
cating how many threads currently hold reference to the sub
block. A non-zero value may infer that a sub blockis currently
referenced by one or more threads. In another embodiment,
the reference count of a sub block is incremented, when a
thread starts operating on a collection and accesses the sub
block for a first time.

At stage 330, reference counts for the first sub block and a
second sub block are lazily updated when the thread returns
with a new collection of data items and accesses a second sub
block different from the first sub block. In an embodiment, the
reference count for the first sub block is decremented and the
reference count for the second sub block is incremented. For
example, reference count updater 220 lazily updates refer-
ence counts for the first and the second sub blocks.

In contrast with a conventional mechanism—where the
reference count is constantly updated whenever a reference to
a sub block is destroyed or overwritten, or whenever a refer-
ence to a sub block is created or copied—embodiments may
take a delayed and lazy update approach to reduce perfor-
mance overhead associated with maintaining the reference
count.

In one embodiment, a thread operating on a collection to
write or read into/from a first sub block may operate on a
newer (second) sub block. For example, the age of the newer
(second) sub block is lesser than that of the first sub blocks.
Thus, the newer (second) sub block is allocated after the first
sub block. Under such scenario, the reference count of the
newer (second) sub block may not be incremented to account
for the access by this thread at this time.

10

15

20

25

30

35

40

45

50

55

60

65

6

In another embodiment, when a thread completes its col-
lection and leaves a sub block, for example, sub block 2, the
reference count of sub block 2 is not decremented at this time.

In still another embodiment, when a thread completes it
operation with collection 1 and returns with a new collection
(such as collection 2), it accesses a new sub block. A deter-
mination may be made based on the reference cached on the
thread’s local storage. If the new sub block is different from
the sub block cached, the reference count of the sub block
cached is decremented and the reference count of the new sub
block is incremented.

In still another embodiment, when a thread is destroyed,
the reference count of the sub block cached in its local storage
may be decremented.

At stage 340, one or more sub blocks whose corresponding
reference counts are equal to zero, are freed in the order of
their age. For example, sub block freer 230 frees one or more
sub blocks whose corresponding reference counts are equal to
zero in the order of their age.

In one embodiment, before a thread starts operating on its
collection, it may scan through the aged sub blocks that are no
longer required. For example, sub blocks whose age has
exceeded a threshold may need to be freed. Alternatively, sub
blocks whose data has been copied to newer sub blocks may
be freed. The aged sub blocks whose reference counts are set
to zero, may be freed in the order of their age, from the oldest
sub block to the newest one.

In another embodiment, as the thread scans through the
aged sub blocks sequentially based on their allocation time,
the scan may be terminated if it encounters a sub block with
a non-zero reference count. In still another embodiment,
access to a sub block’s specific reference count may be syn-
chronized using a light weight lock. No two threads may
access a reference count for the same sub block simulta-
neously. For example, if a thread finds another thread freeing
the aged sub blocks; it may abort and proceed with the opera-
tion on its collection. Thus, this scanning operation may be
non-blocking and protected through the light weight locking
mechanism.

FIG. 5 depicts freeing memory safely with low perfor-
mance overhead, according to an embodiment. In the
example illustrated in FIG. 5, there are six threads—thread 1
to 6—operating on collections of data items to read or write
from/into memory sub blocks 1 to 6, with sub block 1 being
the oldest block and sub block 6 being the newest one in the
logical memory block 502.

When a thread starts on a collection and accesses a sub
block for a first time, it may cache a reference to the sub block
in its thread local storage. As shown in FIG. 5, Thread 1 and
2 each caches a reference to sub block 3. Thread 3 caches a
reference to sub block 5 and Thread 4 caches a reference to
sub block 6. Notably, Thread 5 caches a reference to sub block
3, but currently also points to sub block 6, indicating thread 5
may span access to sub blocks 3 and 6 in operating on a
specific collection of data items. Thread 6 caches a reference
to sub block 3, but is not currently referencing any sub block
indicating it is yet to start with a new collection of data items.
For example, thread 6 may access sub block 6 for processing
its next collection of data items, if sub block 3 is full.

Before a thread starts operating on a new collection, for
example, thread 7 may scan through the aged sub blocks
sequentially based on the allocation time and identify that sub
block 1 and 2 have zero reference count. Thread 7 may ter-
minate the scanning process when it encounters a non-zero
reference count at sub block 3 and stop scanning further.
Thread 7 may proceed to free sub blocks 1 and 2.

US 9,223,690 B2

7

FIG. 5 also illustrates a lazily updating mechanism in
maintaining the reference count for a sub block. In the
example of thread 5, as noted above, thread 5 caches a refer-
ence to sub block 3, but currently also points to sub block 6,
indicating thread 5 has moved over from sub block 3 to a
newer sub block 6 in processing a collection of data items. In
the embodiments of a delayed and lazily updating approach,
when thread 5 leaves sub block 3 and moves to sub block 6,
the reference count on sub block 6 is not incremented to
account for the access by thread 5 at this time.

In the example of thread 6, it is waiting to start on a new
collection of data items. When thread 6 completes a previous
collection and leaves sub block 3, the reference count on sub
block 3 is not decremented at this time. Accordingly, the
lazily updated reference count, the thread local storage and
light weight locking mechanism may result in safely freeing
memory with less performance overhead in a multi-threaded
environment.

Example Computer System Implementation

Embodiments shown in FIGS. 1-5, or any part(s) or func-
tion(s) thereof, may be implemented using hardware, soft-
ware modules, firmware, tangible computer readable media
having instructions stored thereon, or a combination thereof
and may be implemented in one or more computer systems or
other processing systems.

FIG. 6 illustrates an example computer system 600 in
which embodiments, or portions thereof, may be imple-
mented as computer-readable code. For example, MFELPO
115, including its components, as shown in FIG. 2, can be
implemented in computer system 600 using hardware, soft-
ware, firmware, tangible computer readable media having
instructions stored thereon, or a combination thereof and may
be implemented in one or more computer systems or other
processing systems. Hardware, software, or any combination
of such may embody any of the modules and components in
FIGS. 1-5.

If programmable logic is used, such logic may execute on
a commercially available processing platform or a special
purpose device. One of ordinary skill in the art may appreciate
that embodiments of the disclosed subject matter can be prac-
ticed with various computer system configurations, including
multi-core multiprocessor systems, minicomputers, main-
frame computers, computer linked or clustered with distrib-
uted functions, as well as pervasive or miniature computers
that may be embedded into virtually any device.

For instance, at least one processor device and a memory
may be used to implement the above described embodiments.
A processor device may be a single processor, a plurality of
processors, or combinations thereof. Processor devices may
have one or more processor “cores.”

Various embodiments are described in terms of this
example computer system 600. After reading this description,
it will become apparent to a person skilled in the relevant art
how to implement embodiments of the invention using other
computer systems and/or computer architectures. Although
operations may be described as a sequential process, some of
the operations may in fact be performed in parallel, concur-
rently, and/or in a distributed environment, and with program
code stored locally or remotely for access by single or multi-
processor machines. In addition, in some embodiments the
order of operations may be rearranged without departing
from the spirit of the disclosed subject matter.

Processor device 604 may be a special purpose or a general
purpose processor device. As will be appreciated by persons
skilled in the relevant art, processor device 604 may also be a
single processor in a multi-core/multiprocessor system, such
system operating alone, or in a cluster of computing devices

10

25

30

40

45

50

8

operating in a cluster or server farm. Processor device 604 is
connected to a communication infrastructure 606, for
example, a bus, message queue, network, or multi-core mes-
sage-passing scheme.

Computer system 600 also includes a main memory 608,
for example, random access memory (RAM), and may also
include a secondary memory 610. Secondary memory 610
may include, for example, a hard disk drive 612, removable
storage drive 614. Removable storage drive 614 may com-
prise a floppy disk drive, a magnetic tape drive, an optical disk
drive, a flash memory, or the like. The removable storage
drive 614 reads from and/or writes to a removable storage unit
618 in a well-known manner. Removable storage unit 618
may comprise a floppy disk, magnetic tape, optical disk, etc.
which is read by and written to by removable storage drive
614. As will be appreciated by persons skilled in the relevant
art, removable storage unit 618 includes a computer usable
storage medium having stored therein computer software
and/or data.

In alternative implementations, secondary memory 610
may include other similar means for allowing computer pro-
grams or other instructions to be loaded into computer system
600. Such means may include, for example, a removable
storage unit 622 and an interface 620. Examples of such
means may include a program cartridge and cartridge inter-
face (such as that found in video game devices), a removable
memory chip (such as an EPROM, or PROM) and associated
socket, and other removable storage units 622 and interfaces
620 which allow software and data to be transferred from the
removable storage unit 622 to computer system 600.

Computer system 6600 may also include a network inter-
face 624. Network interface 524 allows software and data to
be transferred between computer system 600 and external
devices. Network interface 624 may include a modem, a
network interface (such as an Ethernet card), a communica-
tions port, a PCMCIA slot and card, or the like. Software and
data transferred via network interface 624 may be in the form
of'signals, which may be electronic, electromagnetic, optical,
or other signals capable of being received by network inter-
face 624. These signals may be provided to network interface
624 via a communications path 626. Communications path
626 carries signals and may be implemented using wire or
cable, fiber optics, a phone line, a cellular phone link, an RF
link or other communications channels.

In this document, the terms “computer program medium”
and “computer usable medium” are used to generally refer to
media such as removable storage unit 618, removable storage
unit 622, and a hard disk installed in hard disk drive 612.
Computer program medium and computer usable medium
may also refer to memories, such as main memory 608 and
secondary memory 610, which may be memory semiconduc-
tors (e.g. DRAMS, etc.).

Computer programs (also called computer control logic)
are stored in main memory 608 and/or secondary memory
610. Computer programs may also be received via network
interface 624. Such computer programs, when executed,
enable computer system 600 to implement embodiments as
discussed herein. In particular, the computer programs, when
executed, enable processor device 604 to implement the pro-
cesses of embodiments of the present invention, such as the
stages in the methods illustrated by flowchart 300 of FIG. 3,
discussed above. Accordingly, such computer programs rep-
resent controllers of the computer system 600. Where
embodiments are implemented using software, the software
may be stored in a computer program product and loaded into

US 9,223,690 B2

9

computer system 600 using removable storage drive 614,
interface 620, and hard disk drive 612, or network interface
624.

Embodiments of the invention also may be directed to
computer program products comprising software stored on
any computer useable medium. Such software, when
executed in one or more data processing device(s), causes a
data processing device(s) to operate as described herein.
Embodiments of the invention employ any computer useable
or readable medium. Examples of computer useable medi-
ums include, but are not limited to, primary storage devices
(e.g., any type of random access memory), secondary storage
devices (e.g., hard drives, floppy disks, CD ROMS, ZIP disks,
tapes, magnetic storage devices, and optical storage devices,
MEMS, nano-technological storage device, etc.), and com-
munication mediums (e.g., wired and wireless communica-
tions networks, local area networks, wide area networks,
intranets, etc.).

Conclusion

It is to be appreciated that the Detailed Description section,
and not the Summary and Abstract sections (if any), is
intended to be used to interpret the claims. The Summary and
Abstract sections (if any) may set forth one or more but not all
exemplary embodiments of the invention as contemplated by
the inventor(s), and thus, are not intended to limit the inven-
tion or the appended claims in any way.

While the invention has been described herein with refer-
ence to exemplary embodiments for exemplary fields and
applications, it should be understood that the invention is not
limited thereto. Other embodiments and modifications
thereto are possible, and are within the scope and spirit of the
invention. For example, and without limiting the generality of
this paragraph, embodiments are not limited to the software,
hardware, firmware, and/or entities illustrated in the figures
and/or described herein. Further, embodiments (whether or
not explicitly described herein) have significant utility to
fields and applications beyond the examples described herein.

Embodiments have been described herein with the aid of
functional building blocks illustrating the implementation of
specified functions and relationships thereof. The boundaries
of these functional building blocks have been arbitrarily
defined herein for the convenience of the description. Alter-
nate boundaries can be defined as long as the specified func-
tions and relationships (or equivalents thereof) are appropri-
ately performed. Also, alternative embodiments may perform
functional blocks, steps, operations, methods, etc. using
orderings different than those described herein.

2 <

References herein to “one embodiment,” “an embodi-
ment,” “an example embodiment,” or similar phrases, indi-
cate that the embodiment described may include a particular
feature, structure, or characteristic, but every embodiment
may not necessarily include the particular feature, structure,
or characteristic. Moreover, such phrases are not necessarily
referring to the same embodiment. Further, when a particular
feature, structure, or characteristic is described in connection
with an embodiment, it would be within the knowledge of
persons skilled in the relevant art(s) to incorporate such fea-
ture, structure, or characteristic into other embodiments
whether or not explicitly mentioned or described herein.

The breadth and scope of the invention should not be lim-
ited by any of the above-described exemplary embodiments,
but should be defined only in accordance with the following
claims and their equivalents.

10

15

20

25

35

40

45

55

60

65

10

What is claimed is:

1. A computer-implemented method for memory manage-

ment, comprising:

creating a reference count for each sub block in a global
memory block, wherein the global memory block
includes a plurality of sub blocks aged based on respec-
tive allocation time;

incrementing a reference count for a first sub block when a
thread operates on a collection of data items and
accesses the first sub block for a first time;

maintaining a reference count for a second sub block,
wherein the reference count for the second sub block is
not updated when the thread operates on the collection
of data items when accessing, the second sub block, and
wherein the second sub block has an allocation time
after that of the first sub block;

lazily updating reference counts for the first sub block and
a third sub block when the thread returns with a new
collection of data items and accesses the third sub block,
different from the first sub block, wherein the reference
count for the first sub block is decremented and the
reference count for the third sub block is incremented;
and

freeing one or more sub blocks in the order of their age,
wherein reference counts of the sub blocks to be freed
are equal to zero.

2. The method of claim 1, wherein freeing further com-

prises:

scanning through the one or more sub blocks in the order of
their age until encountering a sub block with a non-zero
reference count.

3. The method of claim 2, further comprising:

scanning through the one or more sub blocks whose cor-
responding reference counts are equal to zero before the
thread operates on the collection of data items.

4. The method of claim 2, further comprising:

aborting the scanning and proceeding with operating on the
collection of data items if a first thread finds a second
thread is in the process of freeing the one or more sub
blocks.

5. The method of claim 1, farther comprising:

caching a reference to the first sub block in a local storage
of the thread when the thread operates on the collection
of data items and accesses the first sub block for the first
time.

6. The method of claim 1, wherein lazily updating further

comprises:

decrementing the reference count for the first sub block
when the thread is destroyed.

7. The method of claim 1,

wherein the reference count for the second sub block is not
updated when the thread completes operating on the
collection of data items and leaves the second sub block.

8. The method of claim 1, wherein access to the reference

number for each sub block is synchronized using a lock.
9. A system for memory management, comprising:
a reference count creator, configured to create a reference
count for each sub block in a global memory block,
wherein the global memory block includes a plurality of
sub blocks aged based on respective allocation time;
a reference count updater, configured to:
increment a reference count for a first sub block when a
thread operates on a collection of data items and
accesses the first sub block for a first time;

maintain a reference count for a second sub block,
wherein the reference count for the second sub block
is not updated when the thread operates on the collec-

US 9,223,690 B2

11

tion of data items when accessing the second sub
block, and wherein the second sub block has an allo-
cation time after that of the first sub block; and

lazily update reference counts for the first sub block and
a second sub block when the thread returns with a new
collection of data items and accesses the third sub
block different from the first sub block, wherein the
reference count for the first sub block is decremented
and the reference count for the third sub block is
incremented; and

a block freer, configured to free one or more sub blocks in
the order of their age, wherein reference counts of the
sub blocks to be freed are equal to zero.

10. The system of claim 9, wherein the block freer is further

configured to:

scan through the one or more sub blocks in the order of
their age until encountering a sub block with a non-zero
reference count.

11. The system of claim 10, wherein the block freer is

further configured to:

scan through the one or more sub blocks Whose corre-
sponding reference counts are equal to zero before the
thread operates on the collection of data items.

12. The system of claim 10, wherein the block freer is

further configured to:

abort the scanning and proceed with operating on the col-
lection of data items if a first thread finds a second thread
is in the process of freeing the one or more sub blocks.

13. The system of claim 9, further comprising:

a reference cacher, configured to cache a reference to the
first sub block in a local storage of the thread when the
thread operates on the collection of data items and
accesses the first sub block for the first time.

14. The system of claim 9, wherein the reference count

updater is further configured to:

decrement the reference count for the sub block which is
cached in the local storage of the thread, when the thread
is destroyed.

5

10

15

20

25

30

35

12

15. The system of claim 9,

wherein the reference count for the second sub block is not
updated when the thread completes operating on the
collection of data items and leaves the second sub block.

16. The system of claim 9, wherein, access to the reference
number for each sub block is synchronized using a lock.

17. A computer program product comprising a computer
readable storage medium having instructions encoded
thereon that, when executed by a processor, cause the proces-
sor to perform operations comprising:

creating a reference count for each sub block in a global

memory block, wherein the global memory block
includes a plurality of sub blocks aged based on respec-
tive allocation time;

incrementing a reference count for a first sub block when a

thread operates on a collection of data items and
accesses the first sub block for a first time;

maintaining a reference count for a second sub block,

wherein the reference count for the second sub block is
not updated when the thread operates on the collection
of data items when accessing the second sub block, and
wherein the second sub block has an allocation time
after that of the first sub block;

lazily updating reference counts for the first sub block and

a third sub block when the thread returns with a new
collection of data items and accesses a third sub block
different from the first sub block, wherein the reference
count for the first sub block is decremented and the
reference count for the third sub block is incremented;
and

freeing one or more sub blocks in the order of their age,

wherein reference counts of the sub blocks to be freed
are equal to zero.

18. The computer program product of claim 17, the freeing
further comprising:

scanning through the one or more sub blocks in the order of

their age until encountering a sub block with a non-zero
reference count.

